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Abstract

Artificial intelligence (AI) has become an essential tool in the field of materials1

science, however material scientists often face friction when attempting to integrate2

AI into their research practices. This paper presents Smart Material (SM), an3

innovative platform designed to accelerate and optimize the discovery of new4

materials, leveraging deep learning techniques to facilitate more efficient and5

precise analysis. SM includes capabilities for querying and learning from large6

experimental and theoretical datasets, generating entirely novel material prototypes,7

and predicting the properties of these new materials before experimental synthesis8

and characterization. Currently, SM is powering projects ranging from the naval9

industry, through the simulation of corrosion in vessel materials, to the energy10

industry, with the identification of more efficient materials for lithium-ion batteries.11

The results obtained so far with this platform have been promising, leading to the12

discovery of a promising lithium-ion battery cathode. This paper will discuss the13

platform’s methodology in detail and the findings achieved thus far, along with the14

potential of this technology to revolutionize the field of materials discovery.15

1 Introduction16

1.1 General Context17

We interact daily with thousands of specialized materials that are key components of advanced18

technology and infrastructure. The discovery of new materials is a cornerstone of innovation across19

a wide range of industries and domains, from information technology and energy to medicine20

and aerospace engineering. Despite its importance, material discovery remains heavily reliant on21

experimentation and serendipity. Since the development of new materials currently involves studies22

spanning 10 to 20 years with very high costs, finding suitable materials is the bottleneck in the23

transition to a clean energy future (1; 2).24

Recently, interest in applying Artificial Intelligence (AI) techniques and its subclasses to generate new25

materials with desired properties has greatly increased (3; 4; 5; 6). This set of AI methods is often26

inspired by their outstanding success in processing images and texts, such as DALL-E 2 (7) or GPT-427

(8), to name a few examples, and is expanding into the field of materials science and engineering.28

Therefore, implementing AI in material discovery not only promises to accelerate the pace of29

innovation and reduce costs but also opens new frontiers of knowledge and application for materials30

science and engineering (9).31
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1.2 Problem32

The primary challenge faced by researchers and engineers in the field of materials science is the high33

time and financial investment required by the traditional material discovery process. Even with the34

most advanced experimental synthesis techniques, characterizing new materials is a laborious process35

that can take years, if not decades, of systematic exploration.36

Moreover, material discovery is not limited to identifying new materials; it also involves optimizing37

their properties for specific applications. This requires understanding and mastering the relationship38

between a material’s structure, its properties, and its performance in specific applications, adding39

another layer of complexity to the problem.40

In this context, Smart Material AI platform (SM, https://smartmaterial.hi-iberia.es) can have a41

significant impact. By utilizing machine learning and other AI techniques, it is possible to analyze42

and learn from large experimental and theoretical datasets, identify hidden patterns and correlations,43

reduce the search space for new materials, and accurately infer their properties before synthesis.44

Additionally, by combining AI with material simulation techniques, it is possible to systematically and45

efficiently explore the vast space of material compositions and configurations. This not only speeds46

up the discovery process but also helps optimize material performance for specific applications.47

1.3 Objectives48

The main objective of this paper is to present the various services, functions, and technologies of49

the SM platform (see Section 1.5 and 2), as well as to showcase its efficacy and performance in the50

discovery and optimization of new materials (see Section 3). Our purpose is to demonstrate how51

this platform can overcome the inherent limitations of traditional methods, significantly accelerating52

the material discovery and optimization process by accurately predicting the properties of potential53

materials before synthesis. Ultimately, the goal of SM is to foster innovation in the field of materials54

science and contribute to the advancement of various industries that rely on the continuous evolution55

and improvement of materials.56

1.4 Application in Energy Industry57

The application of AI has the potential to revolutionize a wide range of industries. One industry58

where SM has already demonstrated a remarkable impact is the energy industry.59

The energy industry is undergoing a crucial transformation in its efforts to achieve sustainability60

and climate neutrality, with batteries playing a pivotal role in this shift. However, the industry61

faces significant challenges, such as the need to improve energy density, reliability, safety, and62

sustainability of batteries while maintaining cost-effectiveness on a large scale (10; 11). In response63

to these challenges, the LiOn-HD project was conceived with the aim of significantly improving64

lithium-ion batteries (LIBs) through the investigation of advanced active and inactive materials and65

their synergistic combinations for different components of the electrochemical cell.66

In the field of cathode materials, several classes of materials have stood out for their performance,67

each with its own advantages and limitations. Nickel, manganese, and cobalt oxides (NMC) are68

known for their high energy density and overall performance, although they present challenges69

in terms of cost and sustainability due to the use of cobalt (12). Lithium cobalt oxide (LCO) is70

another popular option with even higher energy density, but it raises similar concerns regarding cost,71

sustainability, and safety (13). Lithium manganese oxide (LMO) offers a more economical and safer72

option but at the expense of lower energy density (14). Lastly, lithium iron phosphate (LFP) is notable73

for its excellent safety and stability, as well as its greater sustainability due to the use of iron instead74

of more expensive and less sustainable metals (15).75

During the development of the LiOn-HD project, the use of SM enabled the identification of a new76

cathode material with great potential to maximize the performance of lithium-ion batteries while77

minimizing their cost and environmental impact (Section 3).78

1.5 Smart Material AI Platform79

SM platform features an intuitive and user-friendly web interface that integrates the latest AI tech-80

niques and computational methods into a suite of specific and powerful services (Figure 1). Each81
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of these services focuses on providing the user with the best experience based on their interests and82

objectives.83

In this way, SM offers the following main functionalities:84

• Databases Access. Query a comprehensive, ever-growing database of material properties85

from experiments and simulations.86

• Analytic Calculations Methods. Evaluate material behavior for specific applications using87

non-AI algorithms.88

• AI Property Prediction. Utilize predictive models to accurately forecast the properties of89

various materials based on extensive data.90

• Synthesis Procedures. Search for existing material synthesis protocols to inspire new91

material synthesis.92

• Insight Explorer. Access the latest research conducted by the SM team directly.93

• Density Functional Theory. Optimize material energy using theoretical computational94

methods.95

• Autonomous Research Agent. Employ Large Language Models (LLMs) to enhance96

material discovery with insights from scientific literature.97

• AI Materials Discovery. Integrate all the previous methods and algorithms in a work-98

flow designed to optimize the identification and discovery of new materials for various99

applications.100

2 Methods101

All of the services offered by SM can be utilized individually or seamlessly integrated with the SM102

Materials Discovery service, providing a flexible and comprehensive solution for material research.103

Here, the workflow for discovering new materials is summarized in Figure 2:104

• Initial Phase: Define a set of materials to be studied. These may come from popular105

databases (see Section 2.1) or be novel materials generated by AI models (Section 2.2).106

• Property Prediction: Calculate and predict the most relevant properties for the application107

using various computational methods and AI models (Section 2.3).108

• Selection for Characterization: Assign virtual properties to each material and select the109

most promising ones for experimental verification, using thousands of synthesis protocols in110

the SM database for guidance (Sections 2.4 and 2.5).111

• Optimization: Use efficient optimization algorithms (closed-loop optimization) to iteratively112

identify materials that best meet the desired properties, without human intervention.113

Users can explore results intuitively at each phase:114

• Initial Exploration: SM offers 3D visualization of material structures and various filtering115

tools.116

• Detailed Analysis: SM provides options ranging from 2D plots for comparing numerical117

properties to specific visualization panels for complex properties.118

• Material Selection: SM features a flexible tool for interactively weighting properties to119

generate an objective function, helping users identify materials that maximize this function120

in each optimization iteration.121

2.1 Databases122

In SM, material databases such as the Materials Project (16), Open Quantum Materials Database (17),123

Crystallography Open Database (18), 2-D Perovskite Database (19), Screening Platform for Solid124

Electrolytes (20) and GNoME (21) play a pivotal role in enhancing novel materials discovery. These125

databases provide a wealth of information on known materials, including their crystal structures,126

chemical compositions, and physical properties. By leveraging these databases, users can access127

a vast repository of materials data to inform their research and guide the selection of materials for128

further study (Figure 3).129
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Figure 1: Smart Material AI platform homepage.
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Figure 2: Workflow for the discovery of new materials in SM.

2.2 Generative AI130

In addition to leveraging material databases, SM harnesses advanced AI methods such as FTCP131

(22) and CDVAE (23) to generate novel materials. FTCP is a variational autoencoder that learns the132

underlying distribution of a dataset of inorganic crystals and can generate new samples with similar133

characteristics. By training FTCP on vast repositories of materials data, SM can effectively explore134

the latent space of material compositions and configurations, generating novel materials with desired135

properties. Similarly, CDVAE is a diffusion VAE architecture which models the dynamics of crystal136

data generation processes, offering another avenue for generating novel materials by simulating137

the sequential evolution of material structures. By employing these cutting-edge methods, SM can138

systematically explore the vast space of potential materials, accelerating the discovery of novel139

compounds with tailored properties for various applications.140

2.3 Predictive AI and Analytical Calculations141

SM employs a combination of predictive AI methods and analytical calculations to evaluate both142

novel and existing materials comprehensively. Utilizing state-of-the-art graph-based algorithms such143

as Crystal Graph Convolutional Neural Networks (24), Materials Graph Network (25), and Atomic144

Line Graph Neural Networks (26), SM can accurately predict various material properties based on145

their structural features and chemical compositions. These AI models are trained on large datasets of146

known materials to learn intricate relationships between their structures and properties, enabling SM147

to efficiently assess the performance of novel and existing materials.148

Additionally, SM also utilizes analytical calculations to evaluate material behaviour. Though slower,149

these algorithms also provide valuable insights for certain applications. As an example, methods such150

as Crystal Analysis by Voronoi Decomposition (27) or Bond Valence Site Energies (28) have been151

extensively used in the search of better lithium-ion battery cathodes. By integrating predictive AI152

methods with analytical calculations, SM offers a comprehensive framework for evaluating materials,153

facilitating informed decision-making in material design and discovery processes.154
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Figure 3: Example of database search for the discovery of new cathodes. In this experiment, all
lithium oxides and at least one of the chemical elements highlighted in yellow were studied.

2.4 Autonomous Research155

Incorporating LLM-based autonomous agents, SM enhances the process of material discovery by156

providing material scientists with unprecedented access to insights from scientific literature. These157

advanced language models are trained on vast corpora of texts, enabling them to comprehend and158

extract valuable information regarding the properties, synthesis methods, and applications of various159

materials (29; 30). Leveraging this capability, SM’s autonomous agents continuously scan and analyze160

the latest research publications, extracting key insights and identifying promising materials that align161

with specific research objectives. Through the seamless integration of LLM-based autonomous162

agents, SM enhances the efficiency and effectiveness of material scientists, facilitating faster and163

more informed decision-making in the pursuit of novel materials with tailored properties.164

2.5 Synthesis Procedures165

SM harnesses a comprehensive database of synthesis protocols for material synthesis, facilitating the166

last steps of the material discovery process (31; 32). This extensive repository contains a wealth of167

information on experimental procedures, reaction conditions, and synthesis techniques for a wide168

range of materials. Leveraging this database, SM enables material scientists to access a vast array169

of proven synthesis methods, accelerating the transition from theoretical predictions to practical170

implementation.171

Additionally, SM utilizes LLMs to infer synthesis protocols for novel materials that have not yet been172

synthesized. By analyzing the structural and compositional characteristics of these materials and173

drawing insights from existing synthesis protocols, LLMs can generate tailored recommendations174
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for experimental procedures. This integration of synthesis databases with LLM-driven synthesis175

inference empowers material scientists to explore novel materials with confidence, streamlining the176

final stages of material discovery and expediting the translation of theoretical concepts into tangible177

materials.178

2.6 Compute Resources179

SM AI platform is deployed on an on-premises Kubernetes cluster using k3s, which consists of 1180

master node and 11 worker nodes. Collectively, these nodes provide a total of 218 CPU cores, 1200181

GB of RAM, and 15 GPUs to ensure high computational performance and scalability. The cluster182

integrates with a Network-Attached Storage (NAS) solution, offering 60TB of storage capacity for183

datasets, models, and other resources.184

A typical material discovery experiment on the platform utilizes 10 CPU cores and less than 10 GB185

of RAM, completing in under 3 minutes. The efficient deployment of models within the cluster186

ensures that computational resources are distributed effectively, preventing any single experiment187

from monopolizing the CPU or memory. SM platform is designed to maximize resource utilization188

and minimize latency during AI inference tasks, enabling rapid execution and high throughput of189

experiments.190

3 Results191

SM has demonstrated exceptional performance in the discovery and optimization of materials for192

battery cathodes. This section describes some of the most significant achievements to date. SM’s193

ability to analyze extensive datasets, identify hidden patterns and correlations, and accurately predict194

the properties of potential materials has led to significant discoveries and the optimization of a cathode195

that outperforms existing ones in terms of performance and sustainability. These advancements are196

laying the groundwork for a new generation of more efficient, durable, and sustainable batteries.197

In cooperation with a team of materials science experts and utilizing SM platform, we have discovered198

a high-performance cathode material that surpasses current limitations in terms of energy density and199

sustainability. The platform, with its capability to process and learn from massive datasets and its200

powerful AI-based prediction engine, was able to identify combinations of elements and structures201

that had not been previously considered. This new cathode material, whose details remain confidential202

for intellectual property reasons, has demonstrated an energy capacity of 290 mAh/g in laboratory203

tests, which is 45% higher than the best lithium batteries with NMC cathodes, whose maximum204

achieved capacity is 200 mAh/g (Figure 4). Moreover, it is composed of naturally abundant and205

low-cost elements, enhancing its feasibility for large-scale production and reducing its environmental206

impact by avoiding the need for nickel, cobalt, and manganese found in current cathodes.207

The promising results of the LiOn-HD project demonstrate the potential of AI techniques to revo-208

lutionize materials science, overcoming the limitations of traditional experimental approaches and209

optimizing resource usage. AI not only accelerates the material discovery process but also enables210

innovation and new technological advancements.211

4 Discussion212

4.1 Next Steps213

Despite the success achieved, SM continues to evolve, equipping itself with cutting-edge features and214

technologies. Looking ahead, we have identified three primary areas for enhancement that promise to215

significantly advance the capabilities of the SM platform:216

• Structural Relaxation: Implementing AI-driven algorithms for structural relaxation will217

streamline the optimization process of material structures. This enhancement will allow218

researchers to achieve optimal configurations more quickly and easily, significantly reducing219

the time and effort required for material development (33).220

• Molecular Dynamics Simulation: Integrating molecular dynamics simulations into the SM221

platform will enable users to gain a deeper understanding of how different materials interact222
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Figure 4: Galvanostatic cycling of a lithium-ion button cell with a cathode made of the discovered
material and a metallic lithium reference anode. The cycling rate was C/40.

within complex systems. This addition will provide researchers with critical insights into223

the behavior of materials under various conditions, facilitating the design of more robust224

and efficient materials (34).225

• Multi-Scale Modeling: Developing multi-scale modeling capabilities that integrate atomic-226

level simulations with macroscopic property predictions could provide a more comprehen-227

sive understanding of material behavior. This approach would enable researchers to bridge228

the gap between microscopic phenomena and macroscopic applications (35).229

• LLM-based Agents: Incorporating LLM-based agents into the SM platform will enhance230

the overall user experience. These intelligent agents will make SM services more efficient231

and user-friendly, thereby boosting the effectiveness of material discovery efforts. By232

simplifying interactions and automating complex tasks, LLM-based agents will empower233

researchers to focus more on innovation and less on routine processes.234

4.2 Current Projects235

Building on the success of the LiOn-HD project, the NanomatIA initiative has emerged as a significant236

continuation, broadening SM’s focus to encompass additional components of lithium batteries. This237

project aims to leverage AI, nano and biotechnology to enhance the overall performance and safety of238

lithium batteries. By applying advanced machine learning techniques, NanomatIA seeks to identify239

novel material compositions and configurations that can improve battery efficiency, longevity, and240

sustainability.241

The naval industry stands to gain substantial benefits from the SM platform, particularly in addressing242

the critical challenge of marine corrosion. Corrosion is a pervasive issue that impacts the longevity243

and safety of ships and their components, leading to high maintenance and repair costs and potentially244

compromising the structural integrity of vessels. The hulls of ships and internal piping systems are245

especially vulnerable to degradation due to constant exposure to harsh marine environments.246

Given the severity of this issue, SM is being employed in Kimiko project to predict and model247

corrosion processes in vessel steels. By utilizing AI to analyze and forecast these processes, the248

platform can identify materials with enhanced corrosion resistance. This knowledge enables the249

development of new materials that are more durable in marine conditions. Additionally, SM can sug-250
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gest contingency measures, such as the inclusion or replacement of specific parts, or recommending251

optimal steel thicknesses to mitigate corrosion risks.252

Through these advancements, SM not only helps in extending the lifespan of naval vessels but also253

ensures operational safety by maintaining the structural integrity of the ships. The integration of AI254

in predicting and combating corrosion represents a transformative step in the naval industry, leading255

to reduced maintenance costs and improved safety standards.256

These initiatives illustrate the versatile application of the SM platform across different industries,257

showcasing its potential to drive innovation and efficiency in both energy storage and maritime258

technology. As SM continues to evolve, its impact on material science and engineering is set to259

expand, offering robust solutions to complex industrial challenges.260

4.3 Impact Statement261

SM has the potential to transform the way materials discovery is conducted by incorporating AI into262

every stage of the process. With this AI platform, we are overcoming the inherent limitations of263

conventional experiment-based approaches, significantly reducing the time and resources needed for264

the exploration and optimization of materials.265

The impact of SM can be seen not only in the speed and efficiency of materials discovery but also266

in the quality and novelty of the materials discovered. This platform has demonstrated its ability267

to predict materials with unique and optimized properties, opening the door to new applications268

and technological advancements. Furthermore, by providing researchers with the ability to virtually269

explore the materials space, we can stimulate creativity and innovation, expanding the boundaries of270

what is considered possible in materials science.271

Lastly, SM also democratizes the materials discovery process. By offering an intuitive and user-272

friendly interface, it promotes a more collaborative style of research in which a larger percentage273

of stakeholders can participate. This includes materials scientists who are accustomed to using274

computational tools, as well as those with less training in this area, including students and novice275

researchers, and professionals from other related scientific fields.276

5 Conclusions277

Smart Material has proven to be a powerful tool in materials development, successfully identifying278

a new cathode for lithium batteries that promises higher energy density than current solutions279

while reducing environmental and economic impact. This achievement highlights SM’s potential to280

revolutionize materials engineering across various industries, including energy and naval sectors. By281

integrating a comprehensive suite of services —including but not limited to generative AI, predictive282

AI and analytical calculations, and LLM-based autonomous agents— SM enables the efficient283

development of high-quality materials. The platform’s ability to leverage vast material databases,284

advanced optimization algorithms, and extensive synthesis protocols ensures a streamlined and285

effective discovery process. By addressing the urgent technological needs of today, SM paves the286

way for innovative solutions and significant advancements in material science.287
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NeurIPS Paper Checklist477

1. Claims478

Question: Do the main claims made in the abstract and introduction accurately reflect the479

paper’s contributions and scope?480

Answer: [Yes]481

Justification: The abstract and introduction clearly state the paper’s contributions, including482

the integration of advanced technologies like Materials Discovery and Artificial Intelligence,483

and accurately reflect the scope of the work as presented throughout the paper.484

Guidelines:485

• The answer NA means that the abstract and introduction do not include the claims486

made in the paper.487

• The abstract and/or introduction should clearly state the claims made, including the488

contributions made in the paper and important assumptions and limitations. A No or489

NA answer to this question will not be perceived well by the reviewers.490

• The claims made should match theoretical and experimental results, and reflect how491

much the results can be expected to generalize to other settings.492

• It is fine to include aspirational goals as motivation as long as it is clear that these goals493

are not attained by the paper.494

2. Limitations495

Question: Does the paper discuss the limitations of the work performed by the authors?496

Answer: [Yes]497

Justification: The paper does include section 4.1 discussing the limitations of the proposed498

AI platform.499

Guidelines:500

• The answer NA means that the paper has no limitation while the answer No means that501

the paper has limitations, but those are not discussed in the paper.502

• The authors are encouraged to create a separate "Limitations" section in their paper.503

• The paper should point out any strong assumptions and how robust the results are to504

violations of these assumptions (e.g., independence assumptions, noiseless settings,505

model well-specification, asymptotic approximations only holding locally). The authors506

should reflect on how these assumptions might be violated in practice and what the507

implications would be.508

• The authors should reflect on the scope of the claims made, e.g., if the approach was509

only tested on a few datasets or with a few runs. In general, empirical results often510

depend on implicit assumptions, which should be articulated.511

• The authors should reflect on the factors that influence the performance of the approach.512

For example, a facial recognition algorithm may perform poorly when image resolution513

is low or images are taken in low lighting. Or a speech-to-text system might not be514

used reliably to provide closed captions for online lectures because it fails to handle515

technical jargon.516

• The authors should discuss the computational efficiency of the proposed algorithms517

and how they scale with dataset size.518

• If applicable, the authors should discuss possible limitations of their approach to519

address problems of privacy and fairness.520

• While the authors might fear that complete honesty about limitations might be used by521

reviewers as grounds for rejection, a worse outcome might be that reviewers discover522

limitations that aren’t acknowledged in the paper. The authors should use their best523

judgment and recognize that individual actions in favor of transparency play an impor-524

tant role in developing norms that preserve the integrity of the community. Reviewers525

will be specifically instructed to not penalize honesty concerning limitations.526

3. Theory Assumptions and Proofs527

Question: For each theoretical result, does the paper provide the full set of assumptions and528

a complete (and correct) proof?529
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Answer: [NA]530

Justification: The paper does not include any theoretical results that require formal assump-531

tions.532

Guidelines:533

• The answer NA means that the paper does not include theoretical results.534

• All the theorems, formulas, and proofs in the paper should be numbered and cross-535

referenced.536

• All assumptions should be clearly stated or referenced in the statement of any theorems.537

• The proofs can either appear in the main paper or the supplemental material, but if538

they appear in the supplemental material, the authors are encouraged to provide a short539

proof sketch to provide intuition.540

• Inversely, any informal proof provided in the core of the paper should be complemented541

by formal proofs provided in appendix or supplemental material.542

• Theorems and Lemmas that the proof relies upon should be properly referenced.543

4. Experimental Result Reproducibility544

Question: Does the paper fully disclose all the information needed to reproduce the main ex-545

perimental results of the paper to the extent that it affects the main claims and/or conclusions546

of the paper (regardless of whether the code and data are provided or not)?547

Answer: [No]548

Justification: Experimental results obtained in this work are confidential.549

Guidelines:550

• The answer NA means that the paper does not include experiments.551

• If the paper includes experiments, a No answer to this question will not be perceived552

well by the reviewers: Making the paper reproducible is important, regardless of553

whether the code and data are provided or not.554

• If the contribution is a dataset and/or model, the authors should describe the steps taken555

to make their results reproducible or verifiable.556

• Depending on the contribution, reproducibility can be accomplished in various ways.557

For example, if the contribution is a novel architecture, describing the architecture fully558

might suffice, or if the contribution is a specific model and empirical evaluation, it may559

be necessary to either make it possible for others to replicate the model with the same560

dataset, or provide access to the model. In general. releasing code and data is often561

one good way to accomplish this, but reproducibility can also be provided via detailed562

instructions for how to replicate the results, access to a hosted model (e.g., in the case563

of a large language model), releasing of a model checkpoint, or other means that are564

appropriate to the research performed.565

• While NeurIPS does not require releasing code, the conference does require all submis-566

sions to provide some reasonable avenue for reproducibility, which may depend on the567

nature of the contribution. For example568

(a) If the contribution is primarily a new algorithm, the paper should make it clear how569

to reproduce that algorithm.570

(b) If the contribution is primarily a new model architecture, the paper should describe571

the architecture clearly and fully.572

(c) If the contribution is a new model (e.g., a large language model), then there should573

either be a way to access this model for reproducing the results or a way to reproduce574

the model (e.g., with an open-source dataset or instructions for how to construct575

the dataset).576

(d) We recognize that reproducibility may be tricky in some cases, in which case577

authors are welcome to describe the particular way they provide for reproducibility.578

In the case of closed-source models, it may be that access to the model is limited in579

some way (e.g., to registered users), but it should be possible for other researchers580

to have some path to reproducing or verifying the results.581

5. Open access to data and code582
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Question: Does the paper provide open access to the data and code, with sufficient instruc-583

tions to faithfully reproduce the main experimental results, as described in supplemental584

material?585

Answer: [No]586

Justification: Code for this AI platform is not open source but data in Smart Material587

Databases can be freely accessed.588

Guidelines:589

• The answer NA means that paper does not include experiments requiring code.590

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/591

public/guides/CodeSubmissionPolicy) for more details.592

• While we encourage the release of code and data, we understand that this might not be593

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not594

including code, unless this is central to the contribution (e.g., for a new open-source595

benchmark).596

• The instructions should contain the exact command and environment needed to run to597

reproduce the results. See the NeurIPS code and data submission guidelines (https:598

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.599

• The authors should provide instructions on data access and preparation, including how600

to access the raw data, preprocessed data, intermediate data, and generated data, etc.601

• The authors should provide scripts to reproduce all experimental results for the new602

proposed method and baselines. If only a subset of experiments are reproducible, they603

should state which ones are omitted from the script and why.604

• At submission time, to preserve anonymity, the authors should release anonymized605

versions (if applicable).606

• Providing as much information as possible in supplemental material (appended to the607

paper) is recommended, but including URLs to data and code is permitted.608

6. Experimental Setting/Details609

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-610

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the611

results?612

Answer: [NA]613

Justification: The paper does not include experiments that require specification of training or614

test details, such as data splits, hyperparameters, or optimizer types, as it primarily focuses615

on delivering free access to State-of-the-Art AI methodologies which have been already616

validated in the corresponding references.617

Guidelines:618

• The answer NA means that the paper does not include experiments.619

• The experimental setting should be presented in the core of the paper to a level of detail620

that is necessary to appreciate the results and make sense of them.621

• The full details can be provided either with the code, in appendix, or as supplemental622

material.623

7. Experiment Statistical Significance624

Question: Does the paper report error bars suitably and correctly defined or other appropriate625

information about the statistical significance of the experiments?626

Answer: [No]627

Justification: There are no reported error bars, confidence intervals, or statistical significance628

tests related to experimental results.629

Guidelines:630

• The answer NA means that the paper does not include experiments.631

• The authors should answer "Yes" if the results are accompanied by error bars, confi-632

dence intervals, or statistical significance tests, at least for the experiments that support633

the main claims of the paper.634
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• The factors of variability that the error bars are capturing should be clearly stated (for635

example, train/test split, initialization, random drawing of some parameter, or overall636

run with given experimental conditions).637

• The method for calculating the error bars should be explained (closed form formula,638

call to a library function, bootstrap, etc.)639

• The assumptions made should be given (e.g., Normally distributed errors).640

• It should be clear whether the error bar is the standard deviation or the standard error641

of the mean.642

• It is OK to report 1-sigma error bars, but one should state it. The authors should643

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis644

of Normality of errors is not verified.645

• For asymmetric distributions, the authors should be careful not to show in tables or646

figures symmetric error bars that would yield results that are out of range (e.g. negative647

error rates).648

• If error bars are reported in tables or plots, The authors should explain in the text how649

they were calculated and reference the corresponding figures or tables in the text.650

8. Experiments Compute Resources651

Question: For each experiment, does the paper provide sufficient information on the com-652

puter resources (type of compute workers, memory, time of execution) needed to reproduce653

the experiments?654

Answer: [Yes]655

Justification: Smart Material AI platform runs on the computer resources specified in section656

2.6.657

Guidelines:658

• The answer NA means that the paper does not include experiments.659

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,660

or cloud provider, including relevant memory and storage.661

• The paper should provide the amount of compute required for each of the individual662

experimental runs as well as estimate the total compute.663

• The paper should disclose whether the full research project required more compute664

than the experiments reported in the paper (e.g., preliminary or failed experiments that665

didn’t make it into the paper).666

9. Code Of Ethics667

Question: Does the research conducted in the paper conform, in every respect, with the668

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?669

Answer: [Yes]670

Justification: The research aligns with the NeurIPS Code of Ethics, adhering to all guidelines671

related to transparency, privacy, data integrity, fairness, and social responsibility.672

Guidelines:673

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.674

• If the authors answer No, they should explain the special circumstances that require a675

deviation from the Code of Ethics.676

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-677

eration due to laws or regulations in their jurisdiction).678

10. Broader Impacts679

Question: Does the paper discuss both potential positive societal impacts and negative680

societal impacts of the work performed?681

Answer: [Yes]682

Justification: The paper does dedicate section to discussing broader impacts.683

Guidelines:684

• The answer NA means that there is no societal impact of the work performed.685
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• If the authors answer NA or No, they should explain why their work has no societal686

impact or why the paper does not address societal impact.687

• Examples of negative societal impacts include potential malicious or unintended uses688

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations689

(e.g., deployment of technologies that could make decisions that unfairly impact specific690

groups), privacy considerations, and security considerations.691

• The conference expects that many papers will be foundational research and not tied692

to particular applications, let alone deployments. However, if there is a direct path to693

any negative applications, the authors should point it out. For example, it is legitimate694

to point out that an improvement in the quality of generative models could be used to695

generate deepfakes for disinformation. On the other hand, it is not needed to point out696

that a generic algorithm for optimizing neural networks could enable people to train697

models that generate Deepfakes faster.698

• The authors should consider possible harms that could arise when the technology is699

being used as intended and functioning correctly, harms that could arise when the700

technology is being used as intended but gives incorrect results, and harms following701

from (intentional or unintentional) misuse of the technology.702

• If there are negative societal impacts, the authors could also discuss possible mitigation703

strategies (e.g., gated release of models, providing defenses in addition to attacks,704

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from705

feedback over time, improving the efficiency and accessibility of ML).706

11. Safeguards707

Question: Does the paper describe safeguards that have been put in place for responsible708

release of data or models that have a high risk for misuse (e.g., pretrained language models,709

image generators, or scraped datasets)?710

Answer: [NA]711

Justification: The paper poses no such risks.712

Guidelines:713

• The answer NA means that the paper poses no such risks.714

• Released models that have a high risk for misuse or dual-use should be released with715

necessary safeguards to allow for controlled use of the model, for example by requiring716

that users adhere to usage guidelines or restrictions to access the model or implementing717

safety filters.718

• Datasets that have been scraped from the Internet could pose safety risks. The authors719

should describe how they avoided releasing unsafe images.720

• We recognize that providing effective safeguards is challenging, and many papers do721

not require this, but we encourage authors to take this into account and make a best722

faith effort.723

12. Licenses for existing assets724

Question: Are the creators or original owners of assets (e.g., code, data, models), used in725

the paper, properly credited and are the license and terms of use explicitly mentioned and726

properly respected?727

Answer: [Yes]728

Justification: Original paper that produced each of the code packages or datasets used for729

this AI platform are properly cited in this work.730

Guidelines:731

• The answer NA means that the paper does not use existing assets.732

• The authors should cite the original paper that produced the code package or dataset.733

• The authors should state which version of the asset is used and, if possible, include a734

URL.735

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.736

• For scraped data from a particular source (e.g., website), the copyright and terms of737

service of that source should be provided.738
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• If assets are released, the license, copyright information, and terms of use in the739

package should be provided. For popular datasets, paperswithcode.com/datasets740

has curated licenses for some datasets. Their licensing guide can help determine the741

license of a dataset.742

• For existing datasets that are re-packaged, both the original license and the license of743

the derived asset (if it has changed) should be provided.744

• If this information is not available online, the authors are encouraged to reach out to745

the asset’s creators.746

13. New Assets747

Question: Are new assets introduced in the paper well documented and is the documentation748

provided alongside the assets?749

Answer: [NA]750

Justification: The paper does not release new assets.751

Guidelines:752

• The answer NA means that the paper does not release new assets.753

• Researchers should communicate the details of the dataset/code/model as part of their754

submissions via structured templates. This includes details about training, license,755

limitations, etc.756

• The paper should discuss whether and how consent was obtained from people whose757

asset is used.758

• At submission time, remember to anonymize your assets (if applicable). You can either759

create an anonymized URL or include an anonymized zip file.760

14. Crowdsourcing and Research with Human Subjects761

Question: For crowdsourcing experiments and research with human subjects, does the paper762

include the full text of instructions given to participants and screenshots, if applicable, as763

well as details about compensation (if any)?764

Answer: [NA]765

Justification: The paper does not involve crowdsourcing nor research with human subjects.766

Guidelines:767

• The answer NA means that the paper does not involve crowdsourcing nor research with768

human subjects.769

• Including this information in the supplemental material is fine, but if the main contribu-770

tion of the paper involves human subjects, then as much detail as possible should be771

included in the main paper.772

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,773

or other labor should be paid at least the minimum wage in the country of the data774

collector.775

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human776

Subjects777

Question: Does the paper describe potential risks incurred by study participants, whether778

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)779

approvals (or an equivalent approval/review based on the requirements of your country or780

institution) were obtained?781

Answer: [NA]782

Justification: The paper does not involve crowdsourcing nor research with human subjects.783

Guidelines:784

• The answer NA means that the paper does not involve crowdsourcing nor research with785

human subjects.786

• Depending on the country in which research is conducted, IRB approval (or equivalent)787

may be required for any human subjects research. If you obtained IRB approval, you788

should clearly state this in the paper.789
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• We recognize that the procedures for this may vary significantly between institutions790

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the791

guidelines for their institution.792

• For initial submissions, do not include any information that would break anonymity (if793

applicable), such as the institution conducting the review.794
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