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Abstract 
The development of batteries with better properties is one of the most promising lines of work in 

Materials Science nowadays. Because the materials discovery process is slow and expensive, extensive 

efforts are being made in this line of research. One of these initiatives is LiOn-HD, the project in which 

this work has been developed. The goal of this project is to discover new materials with higher energy 

density, lower cost and more environmentally friendly. In LiOn-HD project, the role of HI-Iberia, the 

institution where this work has been developed, is to use Artificial Intelligence techniques for the 

discovery of novel materials for their use in the cathode of the batteries. The cathode is usually the 

component that limits the batteries’ performance. Our strategy is to combine a generative model with 

a predictive model; while the first generates materials, the second one predicts some properties of 

interest of these new materials that are related to the performance of the material in the cathode. 

The materials can be represented in different ways for Deep Learning models to learn some property 

from them. The most promising approach for materials property prediction is to represent the 

material’s unit cell as a graph. Graph Neural Networks are the most adequate Deep Learning models 

to learn from graphs. Several Graph Neural Networks models have emerged in the last years with an 

immense predictive power in the field of Materials Science. Two of them, namely Crystal Graph 

Convolutional Neural Networks and Materials Graph Network, have been evaluated in this work. 

Another goal of this work was to extract knowledge on why these models work so well. For this 

objective, XGNN method has been employed for the explanation of Crystal Graph Convolutional 

Neural Networks predictions in terms of the material’s graph structure. 
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1. Introduction 

 1.1. Current challenges in Materials Science 
We interact with materials daily, as they are an essential part of multiple technological advances. From 

the screen of our phones to the tires of the cars we drive, their composition results from decades of 

research in Materials Science. It would be more convenient that this process of design of new 

materials with specific properties was accelerated. However, nowadays we face some problems in this 

area: the features of materials are highly dimensional, the chemical search space for the design of new 

materials is huge and the chemistry and physics knowledge of materials is still insufficient(1). 

Apart from the design of new materials, the calculation of their properties is also a challenge. 

Computational methods such as Density Functional Theory (DFT)(2) or Molecular Dynamics(3) address 

this problem. However, their cost in terms of computation and time makes them limited. Also, they 

are not completely accurate in the values they compute. These issues might be solved with Artificial 

Intelligence (AI) and Machine Learning (ML), because of their strong capabilities in handling massive 

amounts of high dimensional data (Figure 1). 

  

Figure 1. Applications of Artificial Intelligence in Materials Science(1). 

 

Nowadays, there are multiple lines of work in progress related to Materials Sciences. Some of them 

include COVID-19(4), quantum computing hardware technologies(5) and energy storage(6). Related to 

energy storage, this work forms part of LiOn-HD project(7), whose goal is to develop new batteries with 

improved energy efficiency, lower cost, and lower carbon footprint. Specifically, the institution where 

this work has been developed (HI Iberia(8)) is focused on the cathode of the batteries, and the strategy 

is to develop a framework where a generative model produces new materials and a predictive model 

(such as Graph Neural Networks explored here) guides training by vaticinating how well those new 

materials would work in the cathode of batteries. The novel materials that obtain the best results with 

this model will be tested experimentally in the Instituto de Ciencias Materiales de Madrid (an 

Institute of the ‘Consejo Superior de Investigaciones Científicas’, CSIC). 
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1.2. Essentials of Machine Learning 
Citing Aurélien Géron, “Machine Learning is the science (and art) of programming computers so they 

can learn from data”(9). This tool is useful for solving problems that are either overly complex for 

traditional approaches or that have no known algorithm. Depending on the task ML methods try to 

solve, we distinguish three main categories: Supervised, Unsupervised and Reinforcement Learning 

(Figure 2).  

 

Figure 2. Tasks addressed by Machine Learning in different paradigms(10). 

 

In Supervised learning methods we feed the ML model the data associated with the values we want 

the model to predict (Figure 3); depending on the nature of these solution values, we find classification 

(categorical values) and regression (continuous values) tasks. Some methods in this category include 

Support Vector Machines, Decision Trees and Artificial Neural Networks. This last method can be 

adapted to work in any of the other categories and is the core of Deep Learning (DL), a concept that 

will be reviewed later in this section. 
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Figure 3. Diagram depicting how Supervised Learning works(11). 

 

Unsupervised learning methods consist of training a ML model with data that is not labelled (Figure 

4). Some popular unsupervised learning approaches are K-means and Hierarchical Clustering. 

 

Figure 4. Diagram summarizing how Unsupervised Learning works(11). 

 

In Reinforcement Learning methods, there is an agent that sees an environment and, after performing 

some action that depends on what it has seen, receives a reward or a penalty (Figure 5) that helps the 

agent in choosing better actions in the future. In this context, the agent must learn which is the best 

policy that it must follow to get the highest reward over time. 
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Figure 5. Schema of Reinforcement Learning(11).       

 

Apart from these three main categories we can find more in the literature. For example, there are 

situations when we have lots of data points and only a small number of them are labelled; Semi-

supervised learning methods can deal with this kind of data. One popular method that falls within this 

category is Restricted Boltzmann Machines. 

In words of Dong et al., “Deep Learning is nothing but many classifiers working together, which are 

based on linear regression followed by some activation functions”(12). DL is a subset of ML based on 

neural networks with more than two layers that simulate the behaviour of the human brain, clustering 

data and making predictions with very high accuracy(13). This field has expanded considerably in the 

last 30 years and explaining it in detail is out of the scope of this work. However, advances in Materials 

Science yielded by DL will be discussed in section 1.3. 

1.3. State of the Art in Artificial Intelligence applied to Materials Science 
Some fundamental lines of work in Materials Science are the characterization of materials (calculation 

and collection of information about a material), material property prediction, material synthesis 

(determination of one or more possible pathways to synthesize a material of interest) and theory 

discovery (observation of novel phenomena and extraction of generalizable scientific principles). 

Examples of how AI has been applied in these areas of Materials Science were widely described by Li 

et al.(1).  

With the application of ML on materials comes the issue of how materials should be represented for 

ML models to learn from them. Crystal materials, which are the scope of this work, are formed by a 

unit cell (a parallelepiped that holds the smallest repeating unit with structure symmetry) that is 

reproduced along the space’s three dimensions. One choice is to transform this unit cell as an electron 

density 3D matrix(14). Also, some software packages allow the transformation of the atomic structure 

of the material’s unit cell into a numerical fingerprint(15). Matrices and numerical fingerprints can be 

fed to a traditional DL model (such as a multilayer perceptron or a convolutional neural network) for 

its training. However, the most promising approach seems to be the representation of the unit cell 

structure as a graph(6). 

A graph is a data structure that comprises a set of instances or objects in which some pairs of instances 

are somehow related. In a graph, the instances are called nodes or vertices, and a pair of nodes that 

are related is connected by an edge or link (and the two nodes connected by an edge are neighbours). 

In Figure 6 (top-left), nodes are represented by circles labelled with letters and edges are represented 

by lines with associated numerical weights. Attending to the directionality of its edges, a graph can be 

directed (edges have a direction) or undirected (as in the example, relationships are always reciprocal).  
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The presence of edges in a graph is summarized in an adjacency matrix, where position [i,j] is 1 when 

nodes i and j are connected by an edge, and 0 elsewhere (binary adjacency matrix); the adjacency 

matrix is not always binary, as in weighted graphs where each edge is associated to a weight (Figure 

6, top-right). Apart from adjacency matrix, there are other matrices of interest for the study of graphs. 

One of them is the node attribute matrix: it is the result of stacking the information about all the 

nodes in a graph (Figure 6, bottom-left). Not only nodes but also edges can hold information related 

to themselves: in this case, this information is summarized in an edge attribute matrix (Figure 6, 

bottom-right).  

 

Figure 6. Introduction to graphs. A. Weighted undirected graph that represents glycine amino acid. The edge 

weights indicate bond type (1 = simple, 2 = double). C: carbon, H: hydrogen, N: nitrogen, O: oxygen. B. Adjacency 

matrix of the graph in A; when an edge goes from a node i to a node j, position [i,j] of this matrix is 1, and else it 

is 0. C. Node feature matrix of the graph in A; for each node there are three attributes: the atomic number, the 

atomic weight, and the number of electrons in the atom’s valence band. D. Edge attribute matrix of the graph in 

A; for each edge there are two attributes: the bond length (in angstroms), and the electronegativity difference 

between both chemical elements forming the bond. Source: created by the author of this work. 
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The matrices described in the last paragraph might be the input for a typical DL model. Based on this 

representation, the model can learn from the graph and predict a property of interest. However, 

contrary to inputs for DL models, these matrices have variable dimensions depending on the number 

of nodes and edges. Another problem is that there is no node ordering in graphs, so it would make no 

sense to train a model with these inputs. Therefore, Graph Neural Networks (GNNs) were 

proposed(16)(17). 

GNNs are DL models which have graphs as inputs, contrary to other architectures whose input is a 

tensor, a matrix, or a vector. Because graphs are rotation and permutation-invariant and can 

represent complex relationships, GNNs have excellent expressive power. GNNs learn through graph 

convolutions, transforming the input graph into a convenient vector (graph embedding) that describes 

the graph. Then, predictions are made from this graph embedding.  

GNNs learn the representation of a graph in three steps: 

1. For each node, the GNN produces a vector representation. This step is called message passing. 

The GNN learns this vector representation (called node embedding) by message-passing: the 

final vector representation is the combination of the information of the corresponding node 

and its neighbours in a recursive fashion (Figure 7 depicts a 2-layer graph convolution). This 

phase is called “message passing” because each node’s “message” (information) is passed 

along the edges to its neighbours. For example, a GNN would learn the node embedding of 

node C1 (top-left of Figure 7) from a hidden vector representation of itself and a hidden vector 

representation of its neighbours (nodes C2, N, H3 and H4); recursively, each of these 

representations is learnt from the node attributes of the corresponding node and the node 

attributes of its neighbours. Because the neighbourhood of atoms C1 and C2 is different, a 

GNN would learn a different node embedding for each carbon (even though they are the same 

chemical element). 

2. When the GNN has learnt a vector representation for each node in the graph, the second step 

(message aggregation) is to combine these node embeddings. An example might be the 

computation of their sum or their average. This gives place to a single graph embedding, 

which is a fixed-length vector representation that describes the whole graph.  

3. This graph embedding is the input for a feed forward neural network. This network maps the 

graph embedding vector to the property of interest. This last step is known as property 

prediction. 
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Figure 7. Graphical explanation of message passing phase. Message passing in all nodes of the graph introduced 

in Figure 6 is shown. This explanation involves a 2-layer graph convolution. For an adequate visualization, only 

three neighbours per atom are shown (apart from the atom itself); note that in top-left computation graph the 

node H4 is missing, and so on. In each computation graph we distinguish three stages: bottom (node attributes 

of the nodes), middle (hidden node representation obtained after combining the messages in each set of nodes) 

and top (final node embedding). In the message-aggregation phase, the final node embeddings (which are ten 

vectors in this case) are combined to produce a single vector (graph embedding). Source: created by the author 

of this work. 

Several works have been written using GNNs for the prediction of properties of 

materials(18)(19)(20)(21)(22)(23)(24). Also, graphs have been successfully employed as part of models that 

generate new graphs, even in the field of Materials Sciences(25). In this work, CGCNN(19) and MEGNet(23) 

are used for the prediction of materials properties. For benchmarking, Smooth Overlap of Atomic 
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Positions (SOAP)(26) descriptors (numerical fingerprints) are fed to two models: Support Vector 

Regressor(27) and a Multilayer Perceptron. 

Because machine learning algorithms usually do not explain their predictions, considerable effort has 

been made lately to make their decisions more interpretable(28). Specifically, GNNs have an immense 

prediction power due to their expressivity, but for us is very hard to explain why they predict a given 

value for a property of interest. Hence several methods have been developed recently to address this 

issue(29)(30)(31)(32)(33). 

In this work we are applying XGNN(33) to explain the predictions of GNN models. In a few words, for 

different target classes (classification tasks), this model finds subgraph patterns in the GNN input 

graphs with the combination of Reinforcement Learning and hand-made rules. The user of XGNN can 

specify the number of nodes of the subgraph explanations and some other parameters. In the original 

work, XGNN was employed for the explanation of predictions on molecules; in this work, this method 

has been adapted to make explanations on materials.  

1.4. Data frameworks of interest in Computational Materials Science 
Recently, the production of vast collections of data has augmented considerably. This data generation 

has been propelled by the computational property prediction of materials with Quantum Mechanics 

basic principles; methods like Density Functional Theory(2) and Monte Carlo simulations are widely 

used nowadays.  

There are several projects to make available data about materials. Some of them are focused on the 

production, storage, and organization of computational data: The Materials Project(34), AFLOW(35), 

Open Quantum Database(36), Materials Cloud(37) and NOMAD repository(38). Other databases store and 

organize experimental data, such as The Pauling File(39), Inorganic Crystal Structure Database (ICSD)(40) 

and Crystallography Open Database(41). Some of these resources and others are summarized in Table 

1 (next page). Currently, in the LiOn-HD project, Materials Project, Open Quantum Database and 

NOMAD repository are being employed and will be introduced in the following paragraphs. 

The Materials Project (MP)(43) contains theory-based data, web analysis tools and software for the 

performance and analysis of calculations. This database holds properties of more than 140000 

inorganic materials (as of September 2021), and its programmatic use is quite simple with 

functionalities such as Pymatgen(44) and the Materials API(45). 

NOMAD (NOvels MAterials Discovery) is an open framework for Materials Science data gathering, 

sharing and curation. Most of these data have been calculated computationally with state-of-the-art 

software packages. One of the main motivations of NOMAD is to generate a massive volume of data 

to boost the discovery of new materials and of information associated with them. Also, there is an 

interface called NOMAD API that allows access to the NOMAD database programmatically. 

Open Quantum Materials Database (OQMD) is a database with DFT-calculated thermodynamic and 

structural properties for more than 800000 materials. OQMD contains predictions for ICSD structures 

and hypothetical structures derived from real ICSD structures. There is a Python package called qmpy 

with several tools for computational Materials Science; one of them is QMPYRester, which allows 

queries on the OQMD database.  
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Table 1. Services provided by some significant Materials Science data infrastructures(42). 

 

 

1.5. Applications of Graph Neural Networks in Computational Biology 
In this section, some works using GNNs for their application in Computational Biology will be 

reviewed. The motivation of this brief review is to highlight the expressive power of GNNs and how 

they can be applied to solve different problems in Computational Biology. 

In 2018, You et al.(46) developed a DL framework that generates new molecules with optimized 

properties of interest with the combination of Reinforcement Learning, Generative Adversarial 

Networks and molecular graph representations. In this model, an agent learns a Reinforcement 

Learning policy (called GCPN) when exposed to a graph generation environment, where it receives 

positive or negative rewards based on some properties of interest and the similarity of the generated 

molecules with the molecules in a dataset. The environment checks the validity of the newly 

generated molecules considering the valences of the chemical elements in the molecule. GCPN 

predicts the atoms and bonds to be added to the molecule using a special kind of GNN (relational 

GCN) to learn a representation for distinct types of bonds (simple, double and triple bonds). Some 

properties optimized with this method were logP and a quantitative estimate of drug-likeliness. 

In 2020, Stokes et al.(47) employed a GNN model (ChemProp) to repurpose already-approved drugs for 

their use as antibiotics. In this work, one of the molecules with the best predicted antimicrobial 

activity (previously used for the treatment of diabetes, rebranded by the authors as halicin) is tested 

experimentally, showing its efficacy against a broad spectrum of bacteria and in mice. Also, the 



Eduardo Abenza Severá Application of Graph Neural Networks for the discovery of new 
materials for the cathode of batteries 

 

 12  
 

mechanism of action of this drug was studied, and the authors discovered that it acts through the 

deregulation of the membrane electrochemical gradient of bacteria. 

Finally, this year a significant breakthrough in Computational Structural Biology occurred: Jumper et 

al. published Alphafold2(48), which accurately predicts the three-dimensional structure of a protein 

given its sequence of amino acids. The architecture of this model is summarized in Figure 8A. This 

successful method takes an amino acid sequence as input, performs a multiple sequence alignment 

to detect conserved or novel amino acids in the sequence (MSA) and looks for known structure 

templates for similar sequences (Templates). Then, the Evoformer learns a representation for MSA 

(MSA representation) and Templates (Pair representation), and the output of Evoformer is fed to 

Structure module. A schema of Structure module is shown in Figure 8B. Here, authors see the folded 

protein as a ’spatial graph’, where nodes are amino acids of the protein and amino acids in proximity 

are connected by edges. Using an attention-based neural network architecture (8 blocks with shared 

parameters), the structure of this graph is interpreted and reasoned over (with Pair representation 

and a linear projection of the first row in MSA representation) before it outputs the 3D coordinates of 

the whole protein(49). 

 

Figure 8. AlphaFold2(48). A. Architecture of AlphaFold2 model. B. Architecture of Structure module. For the 

prediction of 3D coordinates, the protein is represented as a graph. 
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1.6. Objectives 
The general objective of this work is: 

• Study and analysis of different Graph Neural Networks models and their application on the 

discovery of new materials for the cathode of batteries. 

The specific objectives of this work are: 

• Comparison of the predictive power achieved by several Graph Neural Networks models 

with traditional methods (ML and DFT). 

• Comparison of the computational cost of these methods. 

• Interpretation of the problem of graph generation from the 3D structure of materials. 

• Explanation of the predictions of a Graph Neural Network. 

2. Materials and Methods 

2.1. Databases 
In this work we have developed a data collection framework that obtains the desired properties from 

Materials Project, OQMD and NOMAD databases. The properties have been standardized where 

possible across databases (units and datatypes). The datasets employed in this work are based only 

on the Materials Project; hence databases NOMAD and OQMD will not be explored in the rest of this 

work. 

2.1.1. Materials Project 
The Materials Project is a database that offers theory-based data, in addition to web-based 

functionalities for the analysis of materials, and software for several uses related to Materials Science 

(such as Pymatgen(44)). This database holds information about more than 140000 different inorganic 

materials, which are the scope of this work. 

We have used Materials API's(45) MPRester class (pymatgen.ext.matproj.MPRester) to retrieve 

information about the materials, using MongoDB operators within its query method. Some material's 

properties obtained from this database are: 

• Structure-related: the CIF file of the material, the cartesian coordinates of the atoms in the 

unit cell, the formula of the material or the space group symbol it belongs to. 

• Lattice-related: angles, lengths and matrix that define the lattice of the material. 

• Others: energy of the material, formation energy per atom, the band gap or the ICSD ID. 

This knowledge has been applied to generate the datasets described in section 3.1. 

2.2. Software libraries 
For this work, Python 3 has been used in an Ubuntu 20.04 computer. To help with code writing and 

execution, several libraries have been employed: 

• Numpy(50): fast computing. 

• Pandas(51): for data analysis and manipulation. 

• Matplotlib(52): visualization library. 

• Pymatgen(44): a package developed by The Materials Project for dealing with materials data. 

Some essential tools for this work include REST-API for downloading Materials Project data, 

CIF file parsing and finding the nearest neighbours of each atom in a material. 
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• NetworkX(53): a library developed for the analysis and visualization of graphs and networks. It 

has been employed to explore the graphs generated from the material's structures. 

• PyTorch(54): Deep Learning framework that combines usability and speed. It is widely adopted 

by the software development community. This library has multiple machine learning 

architectures that have been useful for this work. 

• DScribe(15): transforms atomic structures into fixed-size numerical fingerprints (descriptors). 

• Scikit-learn(55): Python module for traditional Machine Learning. 

2.3. Trained models 

2.3.1. CGCNN 
Crystal Graph Convolutional Neural Networks (CGCNN)(19) is a GNN that represents materials by a 

crystal graph (Figure 9A). In this crystal graph the nodes are atoms and, for each atom, edges are 

added between that atom and a maximum number of neighbours (hyperparameter of the model) 

closer than a given cut-off distance (another hyperparameter). For each atom in the unit cell of the 

material, a vector representation is learnt by exploring its neighbourhood (graph convolutions), and 

all these atom embeddings are concatenated (with mean pooling) in a graph embedding that is used 

for prediction (Figure 9B). 

 

Figure 9. The architecture of CGCNN model(19). A.  3D structures of materials’ unit cell are transformed into 

graphs. B. Schema of CGCNN model layers. With graph convolutions (“R conv”), the input graph node attributes 

are updated with the information of each node’s neighbours. The node embeddings are converted to a single 

graph embedding with pooling. The graph embedding is used for making predictions (“L2 hidden”). 
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2.3.2. MEGNet 
Another model based on graphs that is being evaluated in this work is MatErials Graph Networks 

(MEGNet)(23). In the words of its authors, this model should not be classified as a GNN but as a Graph 

Network, where it is not compulsory the use of neural networks as function approximators. It can be 

used to predict the properties of both molecules and crystals. 

The input of this model is a graph, where atoms closer than a given cut-off distance are linked by edges 

(there is not a maximum number of neighbours per atom). In this graph, there are atom attributes 

(such as atomic numbers), bond attributes (distance between atoms) and state attributes 

(temperature of the system). The architecture of this model is shown in Figure 10. 

 

Figure 10. Schema of MEGNet model(23). A. MEGNet module, an essential component in the MEGNet model 

(top). Edge, node and state attributes are updated sequentially with graph convolutions. B. Overview of MEGNet 

model (bottom). Node embeddings are concatenated with the output of node and edge set2set layers, and with 

the resulting graph embedding MEGNet model makes predictions (three dense layers). 

2.3.3. SOAP-SVR and SOAP-MLP 
There are multiple descriptors for materials apart from graphs. One of them is Smooth Overlap of 

Atomic Positions (SOAP), which is a numerical fingerprint that “encodes regions of atomic geometries 

by using a local expansion of a Gaussian smeared atomic density with orthonormal functions based 

on spherical harmonics and radial basis functions”(56). Using the DScribe library, SOAP descriptors for 

the materials were generated with the following parameters: 
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• Cut-off radius for local region: 5 angstroms. 

• Number of radial basis functions: 1. 

• Maximum degree of spherical harmonics: 2. 

• Averaging over sites: before summing up the magnetic quantum numbers. 

 

The descriptors produced in the previous conditions were fed to two different ML models: 

• Support Vector Regression. The kernel type used in the algorithm was the Radial Basis 

Function kernel. Default hyperparameters of scikit-learn’s sklearn.svm.SVR class were 

used. 

• Multilayer Perceptron. The idea here was to directly compare the graph embeddings learnt 

by CGCNN (2.3.1) with SOAP descriptors. SOAP descriptors were fed to CGCNN after pooling 

layer (“L2 hidden” in Figure 9B). 

2.4. Metrics for evaluation of models 
The models were evaluated over randomized training:validation:test (80:10:10) splits for 10 (CGCNN 

and MEGNet) and 2 (SOAP-SVR and SOAP-MLP) iterations. SOAP-SVR does not need validation set, so 

the dataset for this model’s training was split 80:20. The models have been evaluated in terms of: 

• Regression metrics: because the scope of this work is to predict the properties of the 

materials quantitatively, only regression is performed. The metrics considered in this work 

have been MAE, RMSE and R2. 

o MAE: mean absolute error between real and predicted properties. 

o RMSE: root mean square error between real and predicted properties. 

o R2: coefficient of determination between real and predicted properties. It is the 

proportion of variance in the real property values of test set instances that can be 

explained by the model predictions on test set instances. 

• Computational cost: not only must models have predictive power, but also, they should 

supply interesting metrics related to the model’s use and deployment. The metrics considered 

here are model training time and model parameters size.  

2.5. Explainability of the GNN predictions 
GNNs have huge predictive power. We know they predict accurately because they learn a convenient 

vector representation of graphs based on the neighbourhood of nodes and on node, edge and graph 

attributes. However, it is hard to explain why they predict a property value for a given graph. In this 

work the method XGNN(33) is used for the explanation of GNN predictions. 

XGNN allows the interpretation of GNNs at the model level after training a Reinforcement Learning 

graph generator. This method explains the predictions of a GNN model in terms of the connectivity 

between atoms and the identity of these atoms. 

The graph generator produces graph patterns (subgraphs) that try to maximize a given model 

prediction matching some validity rules. In this work, the source code of this method has been adapted 

to CGCNN with two different approaches (atom identity): 

• Atoms are labelled with their periodic group. 

• Atoms are labelled with their period number. 

The maximum number of atoms per explanation has been set to 6 and the maximum number of 

neighbours per atom has been set to 4. The properties predicted in the CGCNN paper have been 
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discretized with the median of each property in the training set: instances lower or equal than the 

median are class “low” and instances above the median are class “high”. These categorical properties 

have been used as a target for classification, and XGNN method has been employed to explain the 

CGCNN predictions on the test set. Only predictions with a probability higher than 0.8 were allowed. 

For each property, 300 explanations have been produced (150 per class). 

3. Results 

3.1. Exploratory analysis of databases 
In this work, two datasets have been employed: 

• CGCNN: this dataset was described in CGCNN paper(19). In its GitHub repository a list of 46744 

Materials Project IDs of entries used in the paper can be found(57). For every entry, the 

properties indicated in Table 2 were retrieved. 

• MEGNet: this dataset was described in MEGNet paper(23) and is stored in Figshare(58) 

repository. This dataset contains 69239 materials with 7 properties (described in Table 2). 

 
Table 2. Properties in the datasets employed in this work. A brief description is provided. The presence of the 

properties in each dataset (CGCNN and MEGNet) is marked with an “X”. 

Property Description CGCNN MEGNet 

Materials Project ID An identifier that associates a material to its corresponding entry in 
the Materials Project. 

 X 

Primitive CIF file A file that contains crystallographic information (structure) of a 
material’s asymmetric unit, i.e., the minimum region of a material’s 
structure that, after the application of the corresponding symmetry 
and translation operations, forms the entire material’s structure. 

X X 

MEGNet graph Graph generated by MEGNet model from the structure of the 
material that appears in the ‘Primitive CIF file’. Different from CGCNN, 
this graph is built only considering the distances between atoms 
(there is no maximum number of atom neighbours). 

 X 

Energy The energy of the Materials Project entry. It is usually the final 
calculated energy from VASP or other software. It is normalized by 
the number of atoms in the material. 

X  

Formation energy The formation energy of the material divided by its number of atoms. X X 

Fermi energy The electrochemical potential of the material at 0K temperature (59). 
In ordinary metals, this value is very close to electrochemical potential 
under 1000K. 

X  

Band-gap energy Distance between the outer part of the valence band and the lower 
part of the conduction band. Represents the minimum energy that is 
necessary for exciting an electron to the conduction band (inversely 
proportional to conductivity). 

X X 

Bulk modulus Compressibility, in logarithmic scale. Measures resistance to 
compression of a material. 

X X 

Shear modulus Modulus of rigidity of a material, in logarithmic scale. X X 

Poisson ratio A measure of the Poisson effect, that is the deformation of a 
material in directions perpendicular to the specific direction of 
loading. For example, because an elastic band experiences 
contraction perpendicular to the direction of stretching, its Poisson 
ratio is positive. 

X  

 

Before performing any analysis in these two datasets, it is advisable to look at the values we are trying 

to predict. The distributions of the target properties in CGCNN and MEGNet datasets are explored in 
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Figures 11 and 12, respectively. I find convenient pointing out that “Formation energy” follows a 

bimodal distribution in the two datasets, and that there is a considerable number of instances with 

“Band-gap energy” close to zero; in MEGNet dataset this peak is less pronounced because the 

instances with this property equal to zero are filtered out. In CGCNN dataset, Poisson ratios lower than 

0 and higher than 0.5 are filtered out too. 

 

 

Figure 11. Distribution of values for target properties in CGCNN dataset. In the upper-right corner of each 

subplot is highlighted the number of instances (n) with a value for the corresponding property in the dataset. 
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Figure 12. Distribution of values for target properties in MEGNet dataset. In the upper-right corner of each 

subplot is highlighted the number of instances (n) with the corresponding property in the dataset. 

 

3.2. Generation of material graphs 
The inputs for GNNs are graphs. Molecules (section 1.5) are easily converted to graphs: atoms are 

represented by nodes and bonds between atoms are edges in the graph. However, this work focuses 

on crystal materials, and the transformation of these entities into graphs is not that simple. 

In CGCNN(19) and MEGNet(23), the strategy for transforming material's structures to graphs is the 

following: 

• Same as with molecules, nodes are atoms in the material. 

• A pair of atoms is linked by an edge if the distance between the two atoms is lower than a 

threshold (hyperparameter).  

These two methods differ in whether there is a maximum number of neighbours allowed per atom. 

In CGCNN this number is also a hyperparameter, and in MEGNet there is not a maximum number of 

neighbours per atom. A graphic example of the CGCNN procedure is shown in Figure 13. 
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Figure 13. Visual explanation of the graph generation process from material's structures. Grey: Ta; white: O. 

A) Atoms in 3D, as specified in CIF file. B) Atoms in 3D, with zoom in atom number 12 proximity. C) Graph 

generated from material's structure: 8 closest neighbours in a radius of 3 angstroms. D) Graph from C, showing 

only the edges between atom 12 (same as in B) and its neighbours in the graph. 

These two parameters, the maximum number of neighbours and the maximum distance between 

neighbours, determine the expressiveness of the GNN model. A number too low of atom neighbors 

will result in a graph with very few edges where atoms are isolated, and a number too high would 

imply that all atoms in the material are neighbours and practically the same vector representation 

would be learnt for all of them.  

3.3. Performance of GNNs versus traditional models 
In previous sections, CGCNN and MEGNet datasets were explored and the method for the 

transformation of materials’ 3D structures into graphs was explained. The objective here is to 

demonstrate how powerful are CGCNN and MEGNet GNNs models for the prediction of several 

properties of the materials. 

The first step was the replication of Xie et al. work(19). Using CGCNN dataset (section 3.1), CGCNN 

model was trained with the best hyperparameters indicated in the original work. The list of 

hyperparameters and their default values can be seen in Table 3. The results obtained in this work, 

and those obtained by the authors, are shown in Table 4. 
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Table 3. Hyperparameters of CGCNN model. Default values (best performing hyperparameters in the original 

work) are shown. 

Hyperparameter Default value  Hyperparameter Default value 

Epochs 30 
 

Number of graph 
convolutions 

3 
Batch size 256 

Learning rate 0.01 
 

Number of layers after 
convolution 

1 
Learning rate milestones 100 

Momentum 0.9 
 

Maximum number of 
neighbours per atom 

8 
Weight decay 0 

Optimizer 
Stochastic Gradient 

Descent 
 

Cut-off radius for finding 
neighbours 

8 

Number of hidden atom 
features in convolution 

layers 
64  

Minimum distance for 
Gaussian basis 

0 

Number of hidden atom 
features after pooling 

128  
Step for Gaussian basis 

distance 
0.2 

 

Table 4. Results obtained with CGCNN model in CGCNN dataset. Results obtained in the original work(19) 

(‘paper’) and in this work (‘work’). Also, DFT results (computational) reported in the original work(19) are included. 

Target 
property 

Units 
Training 

instancespaper 
MAEpaper 

Training 
instanceswork 

MAEwork MAEDFT 

Fermi 
energy 

eV 28046 0.363 36 837 0.473  

Energy eV/atom 28046 0.072 36 837 0.132  

Formation 
energy 

eV/atom 28046 0.039 36 837 0.084 0.081−0.136 

Band-gap 
energy 

eV 16458 0.388 36 837 0.363 0.6 

Bulk 
modulus 

log(GPa) 2041 0.054 9 507 0.085 0.050 

Shear 
modulus 

log(GPa) 2041 0.087 9 258 0.142 0.069 

Poisson 
ratio 

− 2041 0.030 9 024 0.037  

 

Next, the work of Chen et al. (23) was also replicated. MEGNet dataset (section 3.1) was employed. For 

each property, the authors trained MEGNet model for more than 1000 epochs. However, results of 

models trained for a high number of epochs in this work did not outperform those trained for 30 

epochs. Hence, to save time and computational resources, MEGNet models here were trained for only 

30 epochs. There hyperparameters were set to default in MEGNet model. The results obtained with 

MEGNet in this work, and those obtained by the authors, are shown in Table 5. 
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Table 5. Results obtained with MEGNet model in MEGNet dataset. Results obtained in the original work(23) 

(‘paper’) and in this work (‘work’). 

Target 
property 

Units 
Training 

instancespaper 
MAEpaper Epochspaper 

Training 
instanceswork 

MAEwork Epochswork 

Formation 
energy 

eV/atom 60 000 0.028 >1000 55 391 0.122 30 

Band-gap 
energy 

eV 36 720 0.330 >1000 55 391 0.552 30 

Bulk 
modulus 

log(GPa) 4 664 0.050 >1000 4 664 0.117 30 

Shear 
modulus 

log(GPa) 4 664 0.079 >1000 4 664 0.125 30 

 

Once the results of CGCNN and MEGNet were replicated, both models were trained and evaluated on 

CGCNN dataset for a fair comparison between them. Also, in an attempt to compare GNNs (and 

graphs as descriptors) with other traditional ML methods, two extra models were tested: 

• Support Vector Regression with SOAP descriptors of the materials as input. 

• Multilayer Perceptron with SOAP descriptors of the materials as input. 

The results for the four models are summarized in Table 6 and Figure 14. 
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Table 6. Performance and computational cost metrics of the models under study in this work in the prediction 

of seven materials properties. In all cases, CGCNN dataset was employed. Values correspond to mean ± standard 

deviation. For CGCNN and MEGNet, n=10 (8 with GPU and 2 without GPU for CGCNN). For SOAP-SVR and SOAP-

MLP, n=2. The best result per category for each property is highlighted. 

Target 
property 

Model MAE RMSE R2 Training time (s) 

Energy 

CGCNN 0.135±0.006 0.266±0.005 0.977±0.001 
17810±5038 

655±40 (GPU) 

MEGNet 0.157±0.018 0.223±0.020 0.984±0.002 5873±66 

SOAP-SVR 0.916±0.012 1.360±0.004 0.432±0.006 41326±2449 

SOAP-MLP 1.407±0.001 1.762±0.001 0.036±0.002 85±2 (GPU) 

Formation 
energy 

CGCNN 0.083±0.007 0.140±0.012 0.984±0.003 
17865±5217 

655±39 (GPU) 

MEGNet 0.134±0.012 0.204±0.017 0.966±0.006 5870±59 

SOAP-SVR 0.454±0.004 0.690±0.007 0.617±0.008 19076±1776 

SOAP-MLP 0.892±0.001 1.057±0.001 0.103±0.001 82±1 (GPU) 

Band-gap 
energy 

CGCNN 0.387±0.011 0.637±0.013 0.868±0.005 
17852±5289 

694±60 (GPU) 

MEGNet 0.531±0.042 0.814±0.034 0.787±0.018 5873±53 

SOAP-SVR 0.843±0.006 1.331±0.017 0.427±0.016 42751±9 

SOAP-MLP 1.326±0.015 1.754±0.019 0.015±0.021 87±5 (GPU) 

Fermi 
energy 

CGCNN 0.438±0.009 0.657±0.010 0.947±0.002 
17928±4844 

728±85 (GPU) 

MEGNet 0.604±0.024 0.851±0.030 0.947±0.002 5952±228 

SOAP-SVR 2.292±0.011 2.836±0.004 0.012±0.005 19789±495 

SOAP-MLP 2.223±0.001 2.759±0.003 0.002±0.002 85±4 (GPU) 

Bulk 
modulus 

CGCNN 0.082±0.003 0.139±0.015 0.825±0.043 
1802±1026 

124±14 (GPU) 

MEGNet 0.109±0.010 0.183±0.033 0.738±0.061 486±15 

SOAP-SVR 0.286±0.005 0.398±0.018 0.003±0.005 1303±19 

SOAP-MLP 0.275±0.000 0.354±0.000 0.012±0.000 23±0 (GPU) 

Shear 
modulus 

CGCNN 0.142±0.004 0.287±0.005 0.524±0.015 
1746±1010 

119±15 (GPU) 

MEGNet 0.170±0.048 0.295±0.080 0.478±0.199 481±10 

SOAP-SVR 0.300±0.008 0.422±0.033 0.021±0.002 1181±36 

SOAP-MLP 0.301±0.001 0.460±0.002 0.027±0.007 22±2 (GPU) 

Poisson 
ratio 

CGCNN 0.038±0.000 0.055±0.001 0.400±0.013 
1711±952 

115 ± 15 (GPU) 

MEGNet 0.045±0.001 0.064±0.003 0.246±0.037 469±13 

SOAP-SVR 0.057±0.000 0.075±0.000 0.036±0.007 293±18 

SOAP-MLP 0.057±0.000 0.074±0.000 0.010±0.003 21±0 (GPU) 
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Figure 14. Performance and computational cost metrics for the models under study in this work in the 

prediction of 7 materials properties. For a fair comparison, all models were evaluated in CGCNN dataset. For 

every combination of model and target property, a bar shows the mean value of the corresponding metric after 

n=10 training rounds (CGCNN and MEGNet) or n=2 rounds (SOAP-SVR and SOAP-MLP). Error bars depict standard 

deviation. Training time subplot shows best training times for each model (i.e., GPU where possible).  
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3.4. GNNs explainability 
In section 3.3 of this work, we realized how exact are GNNs in their predictions. Given a graph, first 

they learn a proper vector representation of the graph and from this graph embedding they predict 

the desired property. This process occurs with graph convolutions: for each node, information about 

its neighbours and about itself is aggregated and the vector representation of the node is iteratively 

updated with the training of the GNN model. Hence, due to the complexity of this learning process, it 

is practically impossible to know what it is that the GNN has observed in the graph representation of 

the material’s structure to predict a given property. 

Recently, interpretability has become particularly important as a part of AI models. If AI models are to 

be trusted, we must know how or why they make their predictions. Because GNNs lack explainability, 

several methods have been described recently to address this task (section 1.3). Here, XGNN (33) has 

been applied for the explanation of CGCNN predictions on six different properties: band-gap energy, 

Fermi energy, formation energy, bulk modulus, shear modulus and Poisson ratio. 

Because XGNN only works for classification tasks, these variables have been discretized: values lower 

or equal than the median for each property in the training dataset are class 0 (low), and values above 

this threshold are class 1 (high). Because of the substantial number of different chemical elements in 

the materials (87), atoms were masked with their period (7 unique labels) and with their group in the 

periodic table (18 unique labels) for the explanations. In the next paragraphs, the results for band-gap 

energy and formation energy will be described.  

A summary of the explanations of XGNN for the predictions of CGCNN on band-gap energy is shown 

in Figures 15 and 16. We can see some trends: 

• Chemical elements in groups 15 to 18 are notably more prevalent in explanations for materials 

with high band-gap energy. The same goes for chemical elements in periods 1 to 3. 

• Chemical elements in groups 3 to 12 and periods 4 to 7 are more represented in explanations 

for materials with low band-gap energy. 

• Edges between chemical elements in groups 15 to 18 and periods 1 to 3 are more abundant 

in explanations for materials with high band-gap energy. 

• Edges between chemical elements in groups 3 to 12 and periods 5 to 7 are more significant in 

explanations for low band-gap predictions. 
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Figure 15. Summary of XGNN explanations of CGCNN predictions on band-gap energy (per atom group). The 

presence of metals (groups 1 to 12) and edges between metals are notably higher in explanations for low-energy 

(conductor materials) predictions, and the opposite for non-metals. In heatmaps, numbers indicate edge counts. 
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Figure 16. Summary of XGNN explanations of CGCNN predictions on band-gap energy (per atom period). The 

presence of metals (periods 5 to 7) and edges between metals are notably higher in explanations for low-energy 

predictions, and the opposite for non-metals. 

 

The explanations of XGNN for the predictions of CGCNN on formation energy are summarized in 

Figures 17 and 18. We see that: 

• Chemical elements in groups 5 to 15 are more popular in explanations for high formation 

energy predictions. 

• Chemical elements in groups 16 and 17 and period 2 appear much more in explanations for 

low formation energy predictions. 

These results will be discussed in section 4. 
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Figure 17. Summary of XGNN explanations of CGCNN predictions on formation energy (per atom group). The 

presence of metals (groups 1 to 12) is notably higher in explanations for high-energy predictions, while ionic 

edges (between atoms in groups 1 to 4 and atoms in groups 16 and 17) are more represented in low-energy 

prediction explanations. 
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Figure 18. Summary of XGNN explanations of CGCNN predictions on formation energy (per atom period). 

Atoms of period 2 are notably more represented in low-energy prediction explanations. 
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4. Discussion 
LiOn-HD project (7) aims to develop new batteries with improved energy efficiency, lower cost and 

more respectful with the environment. HI-Iberia (8), the institution where this work was performed, is 

focused on the cathode of these batteries, which is usually the limiting component of them. Our 

strategy is to combine generative Deep Learning with a predictive model: while a generator produces 

novel material’s structures, another architecture predicts how the new materials will behave in the 

batteries’ cathode; this predictive model might be a Graph Neural Network. The generated materials 

with the best predicted behaviour will be tested experimentally in the Instituto de Ciencias Materiales 

de Madrid (an Institute of CSIC). 

In this work, Graph Neural Networks have been used to predict some properties of the materials by 

looking at their structures (CIF files). To this aim, the Materials Project database (43) has been 

employed, and some materials properties have been predicted. These quantitative properties are 

formation energy (normalized by the number of atoms), energy (normalized by the number of atoms), 

Fermi energy, band-gap energy, shear modulus, bulk modulus and Poisson coefficient. The importance 

of these properties, whose meaning was described in Table 2, is outlined in the next paragraph. 

The formation energy of a material is proportional to its stability: the lower the energy needed to 

form the material, the more stable it is. The formation energy of a material is equal to its energy minus 

the sum of the energy of its constituent elements alone; then, the energy of a material is also related 

to its stability. Fermi energy is the electrochemical potential of the material at absolute zero; in most 

cases, it is very close to the electrochemical potential of the material at room temperature, and this 

property could be of interest for predicting the behaviour of a battery cathode (60). Band-gap energy 

of a material represents the minimum energy that is necessary for exciting an electron to the 

conduction band and is inversely proportional to conductivity. Bulk and shear modulus are elasticity 

properties and describe the response of a material to compression and shear stress respectively. The 

Poisson coefficient is another property related to elasticity that gives an idea of the relationship 

between transverse strain and axial strain when a uniaxial stimulus is applied. 

The expressivity of graphs as descriptors was explored in this work. In section 3.2 was reviewed the 

method for graph generation from a material’s structure of CGCNN and MEGNet frameworks. In both 

methods, atoms are nodes in the graph. With the MEGNet approach, edges are added between atoms 

that are closer than a certain cut-off (hyperparameter). In the CGCNN approach, in addition to this 

cut-off there is another hyperparameter: for a given atom, only the N closest atoms are considered 

neighbours (hence, the maximum number of edges for a node is N). 

Also, the predictive power of Graph Neural Networks was evaluated. The models employed here were 

CGCNN (19) and MEGNet (23).  As a benchmark, SOAP descriptors (15) were fed to Support Vector 

Regressor (27) (SOAP-SVR) and to the region of CGCNN that comes after the graph embedding 

generation (“L2 hidden” in Figure 9B) (SOAP-MLP). GNNs notably outperformed the other two models 

for all properties predicted in terms of accuracy (Figure 14).  Although SOAP-MLP model training was 

faster than in the two GNNs, its predictive power was widely worse. Also, model sizes of GNNs were 

several magnitude orders smaller than those of SOAP models. To sum up, the performance of GNNs 

was highly superior to that of models not based on graphs in the conditions tested: they achieved a 

much higher accuracy at a lower computational cost. For a complete comparison, hyperparameter 

tuning of the four models will be performed in the future. 

In recent years, research has put emphasis not only in the predictive power of the ML models but also 

on explaining why these models make their predictions (28). In the case of GNNs, they achieve brilliant 
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accuracy metrics (both regression and classification), but they are so complex that they lack any 

explainability. Traditional methods for the interpretation of DL models might be employed to explain 

the predictions of GNNs based on node attribute matrices, but they do not bring insights about the 

structure of the graph. In this work, XGNN (33) was applied to explain the discretized predictions of 

CGCNN in terms of subgraph patterns and atom identities.  

Before diving into the interpretation of Figures 15 to 18, it would be convenient to understand what 

these figures mean. The histograms show a count of chemical elements’ period or group in the 

periodic table; these subplots might give insights about individual elements associated to a class of 

materials. The heatmaps represent a count of combinations of chemical elements’ periods or groups 

in the periodic table, and this second type of subplot might indicate some bonds between chemical 

elements that are more associated to materials from one class or another. Metal elements are widely 

more abundant in the periodic table in periods 3 to 7 and groups 1 to 12, and non-metals are more 

represented in periods 1 and 2 and groups 13 to 18 (61). Keeping this in mind, the trends observed in 

the predictions are discussed in the next paragraph.  

The first property whose predictions were explained was band-gap energy of a material. As pointed 

out above in this section, the lower the band-gap energy of a material, the more conductive it is. 

Hence, we would expect that metals (generally good conductors) have lower band-gap energy than 

ionic materials. Looking at Figure 15 and 16, according to XGNN method, we see that CGCNN has 

correctly learnt that metal elements and metal bonds are associated to materials with a higher 

conductivity (lower band-gap). 

The other property whose predictions were explained by XGNN was formation energy of a material. 

The lower this property is, the more stable the material. It seems that CGCNN has learnt another trend 

here: elements from the second period or groups 16 and 17 are heavily related to low formation 

energy materials. More specifically, bonds between these chemical elements and metals have a higher 

incidence in low formation energy predictions. This is in accordance with chemical knowledge: ionic 

materials and oxides (bonds between metals and non-metals) tend to be more stable than metals. 

Some lines of research arise from this work and are being outlined next. The evaluation of the models 

has not been complete, as default parameters were used for all of them; hyperparameter tuning 

would provide a clearer picture of the actual performance of the four models employed here. For the 

GNNs to be more robust for their use in LiOn-HD project, some node or edge attributes of interest in 

the field of batteries will be explored and implemented. Finally, a more complete explanation of 

GNNs predictions would be possible if node and edge attributes were considered besides the input 

graph structures. 

5. Conclusion 
Graphs as descriptors and Graph Neural Networks as ML models have demonstrated their power in 

predicting several properties of materials. Applying these frameworks to properties associated with 

the performance of the materials in the cathode of batteries might boost the discovery of new 

materials for this application, and the explanation of this predictions with methods like XGNN will 

provide a more profound knowledge of the chemistry underlying batteries performance.  
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